\(\int \frac {\sqrt {a+b x} \sqrt {c+d x}}{x^2} \, dx\) [552]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 22, antiderivative size = 115 \[ \int \frac {\sqrt {a+b x} \sqrt {c+d x}}{x^2} \, dx=-\frac {\sqrt {a+b x} \sqrt {c+d x}}{x}-\frac {(b c+a d) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{\sqrt {a} \sqrt {c}}+2 \sqrt {b} \sqrt {d} \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right ) \]

[Out]

-(a*d+b*c)*arctanh(c^(1/2)*(b*x+a)^(1/2)/a^(1/2)/(d*x+c)^(1/2))/a^(1/2)/c^(1/2)+2*arctanh(d^(1/2)*(b*x+a)^(1/2
)/b^(1/2)/(d*x+c)^(1/2))*b^(1/2)*d^(1/2)-(b*x+a)^(1/2)*(d*x+c)^(1/2)/x

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {99, 163, 65, 223, 212, 95, 214} \[ \int \frac {\sqrt {a+b x} \sqrt {c+d x}}{x^2} \, dx=-\frac {(a d+b c) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{\sqrt {a} \sqrt {c}}+2 \sqrt {b} \sqrt {d} \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )-\frac {\sqrt {a+b x} \sqrt {c+d x}}{x} \]

[In]

Int[(Sqrt[a + b*x]*Sqrt[c + d*x])/x^2,x]

[Out]

-((Sqrt[a + b*x]*Sqrt[c + d*x])/x) - ((b*c + a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/(S
qrt[a]*Sqrt[c]) + 2*Sqrt[b]*Sqrt[d]*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\sqrt {a+b x} \sqrt {c+d x}}{x}+\int \frac {\frac {1}{2} (b c+a d)+b d x}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx \\ & = -\frac {\sqrt {a+b x} \sqrt {c+d x}}{x}+(b d) \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx+\frac {1}{2} (b c+a d) \int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx \\ & = -\frac {\sqrt {a+b x} \sqrt {c+d x}}{x}+(2 d) \text {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )+(b c+a d) \text {Subst}\left (\int \frac {1}{-a+c x^2} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right ) \\ & = -\frac {\sqrt {a+b x} \sqrt {c+d x}}{x}-\frac {(b c+a d) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{\sqrt {a} \sqrt {c}}+(2 d) \text {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right ) \\ & = -\frac {\sqrt {a+b x} \sqrt {c+d x}}{x}-\frac {(b c+a d) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{\sqrt {a} \sqrt {c}}+2 \sqrt {b} \sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt {a+b x} \sqrt {c+d x}}{x^2} \, dx=-\frac {\sqrt {a+b x} \sqrt {c+d x}}{x}-\frac {(b c+a d) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {c+d x}}{\sqrt {c} \sqrt {a+b x}}\right )}{\sqrt {a} \sqrt {c}}+2 \sqrt {b} \sqrt {d} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {a+b x}}\right ) \]

[In]

Integrate[(Sqrt[a + b*x]*Sqrt[c + d*x])/x^2,x]

[Out]

-((Sqrt[a + b*x]*Sqrt[c + d*x])/x) - ((b*c + a*d)*ArcTanh[(Sqrt[a]*Sqrt[c + d*x])/(Sqrt[c]*Sqrt[a + b*x])])/(S
qrt[a]*Sqrt[c]) + 2*Sqrt[b]*Sqrt[d]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x])/(Sqrt[d]*Sqrt[a + b*x])]

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(212\) vs. \(2(87)=174\).

Time = 1.50 (sec) , antiderivative size = 213, normalized size of antiderivative = 1.85

method result size
default \(-\frac {\sqrt {b x +a}\, \sqrt {d x +c}\, \left (\ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a d x \sqrt {b d}+\ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) b c x \sqrt {b d}-2 \ln \left (\frac {2 b d x +2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) b d x \sqrt {a c}+2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}\, \sqrt {a c}\right )}{2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, x \sqrt {b d}\, \sqrt {a c}}\) \(213\)

[In]

int((b*x+a)^(1/2)*(d*x+c)^(1/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

-1/2*(b*x+a)^(1/2)*(d*x+c)^(1/2)*(ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a*d*x*(b*d)^
(1/2)+ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*b*c*x*(b*d)^(1/2)-2*ln(1/2*(2*b*d*x+2*((
b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*b*d*x*(a*c)^(1/2)+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2
)*(a*c)^(1/2))/((b*x+a)*(d*x+c))^(1/2)/x/(b*d)^(1/2)/(a*c)^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 195 vs. \(2 (87) = 174\).

Time = 0.32 (sec) , antiderivative size = 842, normalized size of antiderivative = 7.32 \[ \int \frac {\sqrt {a+b x} \sqrt {c+d x}}{x^2} \, dx=\left [\frac {2 \, \sqrt {b d} a c x \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b d x + b c + a d\right )} \sqrt {b d} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) + \sqrt {a c} {\left (b c + a d\right )} x \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {a c} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) - 4 \, \sqrt {b x + a} \sqrt {d x + c} a c}{4 \, a c x}, -\frac {4 \, \sqrt {-b d} a c x \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {-b d} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (b^{2} d^{2} x^{2} + a b c d + {\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right ) - \sqrt {a c} {\left (b c + a d\right )} x \log \left (\frac {8 \, a^{2} c^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {a c} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (a b c^{2} + a^{2} c d\right )} x}{x^{2}}\right ) + 4 \, \sqrt {b x + a} \sqrt {d x + c} a c}{4 \, a c x}, \frac {\sqrt {b d} a c x \log \left (8 \, b^{2} d^{2} x^{2} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, b d x + b c + a d\right )} \sqrt {b d} \sqrt {b x + a} \sqrt {d x + c} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x\right ) + \sqrt {-a c} {\left (b c + a d\right )} x \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {-a c} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b c d x^{2} + a^{2} c^{2} + {\left (a b c^{2} + a^{2} c d\right )} x\right )}}\right ) - 2 \, \sqrt {b x + a} \sqrt {d x + c} a c}{2 \, a c x}, -\frac {2 \, \sqrt {-b d} a c x \arctan \left (\frac {{\left (2 \, b d x + b c + a d\right )} \sqrt {-b d} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (b^{2} d^{2} x^{2} + a b c d + {\left (b^{2} c d + a b d^{2}\right )} x\right )}}\right ) - \sqrt {-a c} {\left (b c + a d\right )} x \arctan \left (\frac {{\left (2 \, a c + {\left (b c + a d\right )} x\right )} \sqrt {-a c} \sqrt {b x + a} \sqrt {d x + c}}{2 \, {\left (a b c d x^{2} + a^{2} c^{2} + {\left (a b c^{2} + a^{2} c d\right )} x\right )}}\right ) + 2 \, \sqrt {b x + a} \sqrt {d x + c} a c}{2 \, a c x}\right ] \]

[In]

integrate((b*x+a)^(1/2)*(d*x+c)^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/4*(2*sqrt(b*d)*a*c*x*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*
sqrt(b*x + a)*sqrt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x) + sqrt(a*c)*(b*c + a*d)*x*log((8*a^2*c^2 + (b^2*c^2 + 6
*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a*c + (b*c + a*d)*x)*sqrt(a*c)*sqrt(b*x + a)*sqrt(d*x + c) + 8*(a*b*c^2 + a^2*c
*d)*x)/x^2) - 4*sqrt(b*x + a)*sqrt(d*x + c)*a*c)/(a*c*x), -1/4*(4*sqrt(-b*d)*a*c*x*arctan(1/2*(2*b*d*x + b*c +
 a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)) - sqrt(a*c)*(b*c
 + a*d)*x*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a*c + (b*c + a*d)*x)*sqrt(a*c)*sqrt(b*x
+ a)*sqrt(d*x + c) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) + 4*sqrt(b*x + a)*sqrt(d*x + c)*a*c)/(a*c*x), 1/2*(sqrt(b*d
)*a*c*x*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d*x + b*c + a*d)*sqrt(b*d)*sqrt(b*x + a)*sq
rt(d*x + c) + 8*(b^2*c*d + a*b*d^2)*x) + sqrt(-a*c)*(b*c + a*d)*x*arctan(1/2*(2*a*c + (b*c + a*d)*x)*sqrt(-a*c
)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b*c*d*x^2 + a^2*c^2 + (a*b*c^2 + a^2*c*d)*x)) - 2*sqrt(b*x + a)*sqrt(d*x + c)
*a*c)/(a*c*x), -1/2*(2*sqrt(-b*d)*a*c*x*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(-b*d)*sqrt(b*x + a)*sqrt(d*x + c
)/(b^2*d^2*x^2 + a*b*c*d + (b^2*c*d + a*b*d^2)*x)) - sqrt(-a*c)*(b*c + a*d)*x*arctan(1/2*(2*a*c + (b*c + a*d)*
x)*sqrt(-a*c)*sqrt(b*x + a)*sqrt(d*x + c)/(a*b*c*d*x^2 + a^2*c^2 + (a*b*c^2 + a^2*c*d)*x)) + 2*sqrt(b*x + a)*s
qrt(d*x + c)*a*c)/(a*c*x)]

Sympy [F]

\[ \int \frac {\sqrt {a+b x} \sqrt {c+d x}}{x^2} \, dx=\int \frac {\sqrt {a + b x} \sqrt {c + d x}}{x^{2}}\, dx \]

[In]

integrate((b*x+a)**(1/2)*(d*x+c)**(1/2)/x**2,x)

[Out]

Integral(sqrt(a + b*x)*sqrt(c + d*x)/x**2, x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+b x} \sqrt {c+d x}}{x^2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((b*x+a)^(1/2)*(d*x+c)^(1/2)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 463 vs. \(2 (87) = 174\).

Time = 0.38 (sec) , antiderivative size = 463, normalized size of antiderivative = 4.03 \[ \int \frac {\sqrt {a+b x} \sqrt {c+d x}}{x^2} \, dx=-\frac {\sqrt {b d} {\left | b \right |} \log \left ({\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2}\right ) + \frac {{\left (\sqrt {b d} b^{2} c {\left | b \right |} + \sqrt {b d} a b d {\left | b \right |}\right )} \arctan \left (-\frac {b^{2} c + a b d - {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt {-a b c d} b}\right )}{\sqrt {-a b c d} b} + \frac {2 \, {\left (\sqrt {b d} b^{4} c^{2} {\left | b \right |} - 2 \, \sqrt {b d} a b^{3} c d {\left | b \right |} + \sqrt {b d} a^{2} b^{2} d^{2} {\left | b \right |} - \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} b^{2} c {\left | b \right |} - \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a b d {\left | b \right |}\right )}}{b^{4} c^{2} - 2 \, a b^{3} c d + a^{2} b^{2} d^{2} - 2 \, {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} b^{2} c - 2 \, {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a b d + {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4}}}{b} \]

[In]

integrate((b*x+a)^(1/2)*(d*x+c)^(1/2)/x^2,x, algorithm="giac")

[Out]

-(sqrt(b*d)*abs(b)*log((sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2) + (sqrt(b*d)*b^2*c*a
bs(b) + sqrt(b*d)*a*b*d*abs(b))*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)
*b*d - a*b*d))^2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*b) + 2*(sqrt(b*d)*b^4*c^2*abs(b) - 2*sqrt(b*d)*a*b^3*c*d
*abs(b) + sqrt(b*d)*a^2*b^2*d^2*abs(b) - sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b
*d))^2*b^2*c*abs(b) - sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a*b*d*abs(b)
)/(b^4*c^2 - 2*a*b^3*c*d + a^2*b^2*d^2 - 2*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*b
^2*c - 2*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a*b*d + (sqrt(b*d)*sqrt(b*x + a) -
sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4))/b

Mupad [B] (verification not implemented)

Time = 20.65 (sec) , antiderivative size = 4568, normalized size of antiderivative = 39.72 \[ \int \frac {\sqrt {a+b x} \sqrt {c+d x}}{x^2} \, dx=\text {Too large to display} \]

[In]

int(((a + b*x)^(1/2)*(c + d*x)^(1/2))/x^2,x)

[Out]

((((b^2*c)/4 + (a*b*d)/4)*((a + b*x)^(1/2) - a^(1/2)))/(a^(1/2)*c^(1/2)*d*((c + d*x)^(1/2) - c^(1/2))) - b^2/(
4*d) + (((a + b*x)^(1/2) - a^(1/2))^2*((a^2*d^2)/4 + (b^2*c^2)/4 - (3*a*b*c*d)/4))/(a*c*d*((c + d*x)^(1/2) - c
^(1/2))^2))/(((a + b*x)^(1/2) - a^(1/2))^3/((c + d*x)^(1/2) - c^(1/2))^3 + (b*((a + b*x)^(1/2) - a^(1/2)))/(d*
((c + d*x)^(1/2) - c^(1/2))) - ((a*d + b*c)*((a + b*x)^(1/2) - a^(1/2))^2)/(a^(1/2)*c^(1/2)*d*((c + d*x)^(1/2)
 - c^(1/2))^2)) - atan(((b*d)^(1/2)*(2*(b*d)^(1/2)*(2*(b*d)^(1/2)*(2*((2*(4*a^(9/2)*b^9*c^(19/2) - 4*a^(13/2)*
b^7*c^(15/2)*d^2 - 4*a^(15/2)*b^6*c^(13/2)*d^3 + 4*a^(19/2)*b^4*c^(9/2)*d^5))/(a^7*c^7*d^9) - (((a + b*x)^(1/2
) - a^(1/2))*(32*a^4*b^9*c^10 - 120*a^5*b^8*c^9*d + 288*a^6*b^7*c^8*d^2 - 400*a^7*b^6*c^7*d^3 + 288*a^8*b^5*c^
6*d^4 - 120*a^9*b^4*c^5*d^5 + 32*a^10*b^3*c^4*d^6))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/2))))*(b*d)^(1/2) -
 (2*(8*a^5*b^9*c^9*d + 16*a^6*b^8*c^8*d^2 - 48*a^7*b^7*c^7*d^3 + 16*a^8*b^6*c^6*d^4 + 8*a^9*b^5*c^5*d^5))/(a^7
*c^7*d^9) + (((a + b*x)^(1/2) - a^(1/2))*(16*a^(7/2)*b^10*c^(21/2) - 76*a^(9/2)*b^9*c^(19/2)*d + 228*a^(11/2)*
b^8*c^(17/2)*d^2 - 168*a^(13/2)*b^7*c^(15/2)*d^3 - 168*a^(15/2)*b^6*c^(13/2)*d^4 + 228*a^(17/2)*b^5*c^(11/2)*d
^5 - 76*a^(19/2)*b^4*c^(9/2)*d^6 + 16*a^(21/2)*b^3*c^(7/2)*d^7))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/2))))
- (2*(a^(7/2)*b^11*c^(21/2) + 16*a^(9/2)*b^10*c^(19/2)*d - 42*a^(11/2)*b^9*c^(17/2)*d^2 + 25*a^(13/2)*b^8*c^(1
5/2)*d^3 + 25*a^(15/2)*b^7*c^(13/2)*d^4 - 42*a^(17/2)*b^6*c^(11/2)*d^5 + 16*a^(19/2)*b^5*c^(9/2)*d^6 + a^(21/2
)*b^4*c^(7/2)*d^7))/(a^7*c^7*d^9) + (((a + b*x)^(1/2) - a^(1/2))*(146*a^4*b^10*c^10*d - 556*a^5*b^9*c^9*d^2 +
1006*a^6*b^8*c^8*d^3 - 1192*a^7*b^7*c^7*d^4 + 1006*a^8*b^6*c^6*d^5 - 556*a^9*b^5*c^5*d^6 + 146*a^10*b^4*c^4*d^
7))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/2)))) + (2*(2*a^4*b^11*c^10*d + 8*a^5*b^10*c^9*d^2 - 2*a^6*b^9*c^8*
d^3 - 16*a^7*b^8*c^7*d^4 - 2*a^8*b^7*c^6*d^5 + 8*a^9*b^6*c^5*d^6 + 2*a^10*b^5*c^4*d^7))/(a^7*c^7*d^9) - (((a +
 b*x)^(1/2) - a^(1/2))*(65*a^(7/2)*b^11*c^(21/2)*d - 297*a^(9/2)*b^10*c^(19/2)*d^2 + 597*a^(11/2)*b^9*c^(17/2)
*d^3 - 365*a^(13/2)*b^8*c^(15/2)*d^4 - 365*a^(15/2)*b^7*c^(13/2)*d^5 + 597*a^(17/2)*b^6*c^(11/2)*d^6 - 297*a^(
19/2)*b^5*c^(9/2)*d^7 + 65*a^(21/2)*b^4*c^(7/2)*d^8))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/2))))*1i - (b*d)^
(1/2)*(2*(b*d)^(1/2)*(2*(b*d)^(1/2)*(2*((2*(4*a^(9/2)*b^9*c^(19/2) - 4*a^(13/2)*b^7*c^(15/2)*d^2 - 4*a^(15/2)*
b^6*c^(13/2)*d^3 + 4*a^(19/2)*b^4*c^(9/2)*d^5))/(a^7*c^7*d^9) - (((a + b*x)^(1/2) - a^(1/2))*(32*a^4*b^9*c^10
- 120*a^5*b^8*c^9*d + 288*a^6*b^7*c^8*d^2 - 400*a^7*b^6*c^7*d^3 + 288*a^8*b^5*c^6*d^4 - 120*a^9*b^4*c^5*d^5 +
32*a^10*b^3*c^4*d^6))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/2))))*(b*d)^(1/2) + (2*(8*a^5*b^9*c^9*d + 16*a^6*
b^8*c^8*d^2 - 48*a^7*b^7*c^7*d^3 + 16*a^8*b^6*c^6*d^4 + 8*a^9*b^5*c^5*d^5))/(a^7*c^7*d^9) - (((a + b*x)^(1/2)
- a^(1/2))*(16*a^(7/2)*b^10*c^(21/2) - 76*a^(9/2)*b^9*c^(19/2)*d + 228*a^(11/2)*b^8*c^(17/2)*d^2 - 168*a^(13/2
)*b^7*c^(15/2)*d^3 - 168*a^(15/2)*b^6*c^(13/2)*d^4 + 228*a^(17/2)*b^5*c^(11/2)*d^5 - 76*a^(19/2)*b^4*c^(9/2)*d
^6 + 16*a^(21/2)*b^3*c^(7/2)*d^7))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/2)))) - (2*(a^(7/2)*b^11*c^(21/2) +
16*a^(9/2)*b^10*c^(19/2)*d - 42*a^(11/2)*b^9*c^(17/2)*d^2 + 25*a^(13/2)*b^8*c^(15/2)*d^3 + 25*a^(15/2)*b^7*c^(
13/2)*d^4 - 42*a^(17/2)*b^6*c^(11/2)*d^5 + 16*a^(19/2)*b^5*c^(9/2)*d^6 + a^(21/2)*b^4*c^(7/2)*d^7))/(a^7*c^7*d
^9) + (((a + b*x)^(1/2) - a^(1/2))*(146*a^4*b^10*c^10*d - 556*a^5*b^9*c^9*d^2 + 1006*a^6*b^8*c^8*d^3 - 1192*a^
7*b^7*c^7*d^4 + 1006*a^8*b^6*c^6*d^5 - 556*a^9*b^5*c^5*d^6 + 146*a^10*b^4*c^4*d^7))/(2*a^7*c^7*d^9*((c + d*x)^
(1/2) - c^(1/2)))) - (2*(2*a^4*b^11*c^10*d + 8*a^5*b^10*c^9*d^2 - 2*a^6*b^9*c^8*d^3 - 16*a^7*b^8*c^7*d^4 - 2*a
^8*b^7*c^6*d^5 + 8*a^9*b^6*c^5*d^6 + 2*a^10*b^5*c^4*d^7))/(a^7*c^7*d^9) + (((a + b*x)^(1/2) - a^(1/2))*(65*a^(
7/2)*b^11*c^(21/2)*d - 297*a^(9/2)*b^10*c^(19/2)*d^2 + 597*a^(11/2)*b^9*c^(17/2)*d^3 - 365*a^(13/2)*b^8*c^(15/
2)*d^4 - 365*a^(15/2)*b^7*c^(13/2)*d^5 + 597*a^(17/2)*b^6*c^(11/2)*d^6 - 297*a^(19/2)*b^5*c^(9/2)*d^7 + 65*a^(
21/2)*b^4*c^(7/2)*d^8))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/2))))*1i)/((b*d)^(1/2)*(2*(b*d)^(1/2)*(2*(b*d)^
(1/2)*(2*((2*(4*a^(9/2)*b^9*c^(19/2) - 4*a^(13/2)*b^7*c^(15/2)*d^2 - 4*a^(15/2)*b^6*c^(13/2)*d^3 + 4*a^(19/2)*
b^4*c^(9/2)*d^5))/(a^7*c^7*d^9) - (((a + b*x)^(1/2) - a^(1/2))*(32*a^4*b^9*c^10 - 120*a^5*b^8*c^9*d + 288*a^6*
b^7*c^8*d^2 - 400*a^7*b^6*c^7*d^3 + 288*a^8*b^5*c^6*d^4 - 120*a^9*b^4*c^5*d^5 + 32*a^10*b^3*c^4*d^6))/(2*a^7*c
^7*d^9*((c + d*x)^(1/2) - c^(1/2))))*(b*d)^(1/2) - (2*(8*a^5*b^9*c^9*d + 16*a^6*b^8*c^8*d^2 - 48*a^7*b^7*c^7*d
^3 + 16*a^8*b^6*c^6*d^4 + 8*a^9*b^5*c^5*d^5))/(a^7*c^7*d^9) + (((a + b*x)^(1/2) - a^(1/2))*(16*a^(7/2)*b^10*c^
(21/2) - 76*a^(9/2)*b^9*c^(19/2)*d + 228*a^(11/2)*b^8*c^(17/2)*d^2 - 168*a^(13/2)*b^7*c^(15/2)*d^3 - 168*a^(15
/2)*b^6*c^(13/2)*d^4 + 228*a^(17/2)*b^5*c^(11/2)*d^5 - 76*a^(19/2)*b^4*c^(9/2)*d^6 + 16*a^(21/2)*b^3*c^(7/2)*d
^7))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/2)))) - (2*(a^(7/2)*b^11*c^(21/2) + 16*a^(9/2)*b^10*c^(19/2)*d - 4
2*a^(11/2)*b^9*c^(17/2)*d^2 + 25*a^(13/2)*b^8*c^(15/2)*d^3 + 25*a^(15/2)*b^7*c^(13/2)*d^4 - 42*a^(17/2)*b^6*c^
(11/2)*d^5 + 16*a^(19/2)*b^5*c^(9/2)*d^6 + a^(21/2)*b^4*c^(7/2)*d^7))/(a^7*c^7*d^9) + (((a + b*x)^(1/2) - a^(1
/2))*(146*a^4*b^10*c^10*d - 556*a^5*b^9*c^9*d^2 + 1006*a^6*b^8*c^8*d^3 - 1192*a^7*b^7*c^7*d^4 + 1006*a^8*b^6*c
^6*d^5 - 556*a^9*b^5*c^5*d^6 + 146*a^10*b^4*c^4*d^7))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/2)))) + (2*(2*a^4
*b^11*c^10*d + 8*a^5*b^10*c^9*d^2 - 2*a^6*b^9*c^8*d^3 - 16*a^7*b^8*c^7*d^4 - 2*a^8*b^7*c^6*d^5 + 8*a^9*b^6*c^5
*d^6 + 2*a^10*b^5*c^4*d^7))/(a^7*c^7*d^9) - (((a + b*x)^(1/2) - a^(1/2))*(65*a^(7/2)*b^11*c^(21/2)*d - 297*a^(
9/2)*b^10*c^(19/2)*d^2 + 597*a^(11/2)*b^9*c^(17/2)*d^3 - 365*a^(13/2)*b^8*c^(15/2)*d^4 - 365*a^(15/2)*b^7*c^(1
3/2)*d^5 + 597*a^(17/2)*b^6*c^(11/2)*d^6 - 297*a^(19/2)*b^5*c^(9/2)*d^7 + 65*a^(21/2)*b^4*c^(7/2)*d^8))/(2*a^7
*c^7*d^9*((c + d*x)^(1/2) - c^(1/2)))) + (b*d)^(1/2)*(2*(b*d)^(1/2)*(2*(b*d)^(1/2)*(2*((2*(4*a^(9/2)*b^9*c^(19
/2) - 4*a^(13/2)*b^7*c^(15/2)*d^2 - 4*a^(15/2)*b^6*c^(13/2)*d^3 + 4*a^(19/2)*b^4*c^(9/2)*d^5))/(a^7*c^7*d^9) -
 (((a + b*x)^(1/2) - a^(1/2))*(32*a^4*b^9*c^10 - 120*a^5*b^8*c^9*d + 288*a^6*b^7*c^8*d^2 - 400*a^7*b^6*c^7*d^3
 + 288*a^8*b^5*c^6*d^4 - 120*a^9*b^4*c^5*d^5 + 32*a^10*b^3*c^4*d^6))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/2)
)))*(b*d)^(1/2) + (2*(8*a^5*b^9*c^9*d + 16*a^6*b^8*c^8*d^2 - 48*a^7*b^7*c^7*d^3 + 16*a^8*b^6*c^6*d^4 + 8*a^9*b
^5*c^5*d^5))/(a^7*c^7*d^9) - (((a + b*x)^(1/2) - a^(1/2))*(16*a^(7/2)*b^10*c^(21/2) - 76*a^(9/2)*b^9*c^(19/2)*
d + 228*a^(11/2)*b^8*c^(17/2)*d^2 - 168*a^(13/2)*b^7*c^(15/2)*d^3 - 168*a^(15/2)*b^6*c^(13/2)*d^4 + 228*a^(17/
2)*b^5*c^(11/2)*d^5 - 76*a^(19/2)*b^4*c^(9/2)*d^6 + 16*a^(21/2)*b^3*c^(7/2)*d^7))/(2*a^7*c^7*d^9*((c + d*x)^(1
/2) - c^(1/2)))) - (2*(a^(7/2)*b^11*c^(21/2) + 16*a^(9/2)*b^10*c^(19/2)*d - 42*a^(11/2)*b^9*c^(17/2)*d^2 + 25*
a^(13/2)*b^8*c^(15/2)*d^3 + 25*a^(15/2)*b^7*c^(13/2)*d^4 - 42*a^(17/2)*b^6*c^(11/2)*d^5 + 16*a^(19/2)*b^5*c^(9
/2)*d^6 + a^(21/2)*b^4*c^(7/2)*d^7))/(a^7*c^7*d^9) + (((a + b*x)^(1/2) - a^(1/2))*(146*a^4*b^10*c^10*d - 556*a
^5*b^9*c^9*d^2 + 1006*a^6*b^8*c^8*d^3 - 1192*a^7*b^7*c^7*d^4 + 1006*a^8*b^6*c^6*d^5 - 556*a^9*b^5*c^5*d^6 + 14
6*a^10*b^4*c^4*d^7))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/2)))) - (2*(2*a^4*b^11*c^10*d + 8*a^5*b^10*c^9*d^2
 - 2*a^6*b^9*c^8*d^3 - 16*a^7*b^8*c^7*d^4 - 2*a^8*b^7*c^6*d^5 + 8*a^9*b^6*c^5*d^6 + 2*a^10*b^5*c^4*d^7))/(a^7*
c^7*d^9) + (((a + b*x)^(1/2) - a^(1/2))*(65*a^(7/2)*b^11*c^(21/2)*d - 297*a^(9/2)*b^10*c^(19/2)*d^2 + 597*a^(1
1/2)*b^9*c^(17/2)*d^3 - 365*a^(13/2)*b^8*c^(15/2)*d^4 - 365*a^(15/2)*b^7*c^(13/2)*d^5 + 597*a^(17/2)*b^6*c^(11
/2)*d^6 - 297*a^(19/2)*b^5*c^(9/2)*d^7 + 65*a^(21/2)*b^4*c^(7/2)*d^8))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/
2)))) + (7*a^(7/2)*b^12*c^(21/2)*d - 7*a^(9/2)*b^11*c^(19/2)*d^2 - 21*a^(11/2)*b^10*c^(17/2)*d^3 + 21*a^(13/2)
*b^9*c^(15/2)*d^4 + 21*a^(15/2)*b^8*c^(13/2)*d^5 - 21*a^(17/2)*b^7*c^(11/2)*d^6 - 7*a^(19/2)*b^6*c^(9/2)*d^7 +
 7*a^(21/2)*b^5*c^(7/2)*d^8)/(a^7*c^7*d^9) + (((a + b*x)^(1/2) - a^(1/2))*(112*a^5*b^10*c^9*d^3 - 56*a^4*b^11*
c^10*d^2 + 56*a^6*b^9*c^8*d^4 - 224*a^7*b^8*c^7*d^5 + 56*a^8*b^7*c^6*d^6 + 112*a^9*b^6*c^5*d^7 - 56*a^10*b^5*c
^4*d^8))/(2*a^7*c^7*d^9*((c + d*x)^(1/2) - c^(1/2)))))*(b*d)^(1/2)*4i - (d*((a + b*x)^(1/2) - a^(1/2)))/(4*((c
 + d*x)^(1/2) - c^(1/2))) - (log(((a + b*x)^(1/2) - a^(1/2))/((c + d*x)^(1/2) - c^(1/2)))*(a*d + b*c))/(2*a^(1
/2)*c^(1/2)) + (log(((c^(1/2)*(a + b*x)^(1/2) - a^(1/2)*(c + d*x)^(1/2))*(b*c^(1/2) - (a^(1/2)*d*((a + b*x)^(1
/2) - a^(1/2)))/((c + d*x)^(1/2) - c^(1/2))))/((c + d*x)^(1/2) - c^(1/2)))*(a^(1/2)*b*c^(3/2) + a^(3/2)*c^(1/2
)*d))/(2*a*c)